

COMMON PRE-BOARD EXAMINATION 2022-23

Class XII

Marking Scheme

Subject: APPLIED MATHEMATICS - 241

Q. No.	Hints/Solution	<u>Marks</u>
	<u>SECTION – A</u>	
	(Multiple Choice Questions)	
	(Each question carries 1 mark)	
1.	Option (b) 21	1
2.	Option (b) 4	1
3.	Option (d) 0.34	1
4.	Option (a) N – 1	1
5.	Option (a) 3.6 km	1
6.	Option (b) parameter	1
7.	Option (c) 7.2 minutes	1
8.	Option (a) ₹ 3000	1
9.	Option (c) $\frac{x^3}{3} - e^x + C$	1
10.	Option (a) 8000	1
11.	Option (b) 5 corner points including (7,7) and (3,3)	1
12.	Option (a) 56.5%	1
13.	Option (c) 3	1
14.	Option (b) 5000	1
15.	Option (b) 20:11	1
16.	Option (c) 1.48	1
17.	Option (c) 19,25,31	1
18.	Option (b) Parts of a year	1
19.	Option (b) Both A and R are true but R is not the correct explanation of the assertion	1
20.	Option (b) Both A and R are true but R is not the correct explanation of the assertion SECTION – B	1
	(All questions are compulsory. In case of internal choice, attempt any one question only)	
21.	Here R=2500	1/2
. 21.	i = 0.03	/2
	$P=R+\frac{R}{r}$	1/2
	$P=2500+\frac{2500}{0.03}$	1/2
	=2500 + 83333.33 = ₹ 85833.33	1/2
	-2500 65555.55 - 1 65655.55	
22.	$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	
	L-1 1 J . r 2 21	
	$A^2 = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	1
	k = 2	1

$$Adj(A) = \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{14} \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$
1

23. Let number of necklaces and bracelets produced by firm per day be x and y, respectively.

Maximize:
$$Z = 100x + 300y$$

- subject to, $x + y \le 24 + 2y \le 32$ and $x, y \ge 0$ 1

 24. Length of course = 500 meters
- Time taken by B to cover by 60 meters = 12 seconds.
 - ∴ time taken by B to cover the course = $\frac{12}{60} \times 500 = 100$ seconds
 - ∴time taken by A to cover the course= 100 12 seconds = 88 seconds = 1 minute 28 seconds

OR

Let the speed of man in still water be x km/h

- Speed of man in still water is 6 km/h
- 25. ₹ 200 is treated as interest on ₹ 1800 for 6 months. $i = \frac{200}{1800} = \frac{1}{9}$

$$r_{eff} = (1+i)^2 - 1$$

= $\left(1 + \frac{1}{9}\right)^2 - 1 = 0.23456$
= 23.45%

SECTION - C

(All questions are compulsory. In case of internal choice, attempt any one question only)

26.
$$f'(x) = 6x^{2} + 18x + 12$$

$$= 6(x + 1) (x + 2)$$
Increasing in $(-\infty, -2) \cup (-1, \infty)$
Decreasing in $(-2, -1)$

27.
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$A' = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$\frac{1}{2}(A + A') = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 This is symmetric

$$\frac{1}{2}(A - A') = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 This is skew symmetric
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

28. Evaluate:
$$\int \frac{(2x+1)}{(x+1)(x-2)} dx$$

$$\frac{(2x+1)}{(x+1)(x-2)} = \int \frac{(2x+1)}{(x+1)} \frac{(x-2)}{(x-2)} dx$$

$$= \frac{1}{3}, 0 = \frac{3}{3}$$

$$\int \frac{(2x+1)}{(x+1)(x-2)} dx = \int \frac{1}{3(x+1)} + \frac{5}{3(x-2)} dx$$

$$= \frac{1}{3} \log |x+1| + \frac{5}{3} \log |x-2| + C$$
OR

Evaluate: $\int \frac{x^2}{(x-1)(x-2)(x-3)} dx$

$$\frac{x^2}{(x-1)(x-2)(x-3)} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$

$$A = \frac{1}{2}, B = -4, C = \frac{9}{2}$$

$$\int \frac{x^2}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} + \frac{4}{(x-2)} + \frac{9}{2(x-3)}$$

$$= \frac{1}{2} \log |x-1| - 4 \log |x-2| + \frac{9}{2} \log |x-3| + C$$

29. A manufacturer's total cost function C is given by $C = \frac{x^2}{25} + 2x$
(i) Average cost function C is given by $C = \frac{x^2}{25} + 2x$
(ii) The marginal cost twento on the sum of the sum

28.

$$P(x) = \frac{\lambda^k e^{-\lambda}}{k!}$$
(i) $P(0) = e^{-5} = 0.007$
(ii) $P(5) = \frac{5^5 e^{-5}}{5!} = 0.1822$
(iii) $P(4t | east one is defective) = P(0) + P(1) = 0.007 + 0.035 = 0.042$

OR

$$\mu = 30, \sigma = 6.25$$

$$z = \frac{x - \mu}{\sigma}$$
(i) between 20 and 40 marks

(i) between 20 and 40 marks When x = 20, z = -1.6When x = 30, z = 1.6P (20 < x < 40) = P(-1.6 < z < 1.6) = P(z < 1.6) - P(z < -1.6) = 0.8904 (From z

table)

∴ number of students scoring between 20 and 40 = 89.04% of 2000

= 1781(approximately)

(ii) less than 25 marks
When x = 25, z = -0.8 P(z < -0.8) = 0.2119 $\therefore \text{ number of students scoring less than 25 = 21.19% of 2000}$

= 424(approximately)

33.

Year (x_i)	Index Number(Y)	$X = x_i - A$ $= x_i - 2017$	X ²	XY
2015	9	-2	4	-18
2016	18	-1	1	-18
2017	21	0	0	0
2018	29	1	1	29
2019	38	2	4	76
n = 5	$\sum y = 115$	$\sum X = 0$	$\sum X^2 = 10$	$\sum X Y = 69$

$$a = \frac{\sum y}{n} = 23$$

$$b = \frac{\sum XY}{\sum X^2} = 6.9$$

$$\therefore \text{ required equations is:}$$

$$y = a + bx$$

$$y = 23 + 6.9x$$

Expected percentage for 2020:

				,

Year	Index No.	4-year	4-year	Centered	Centered
		moving	moving	total	moving
		total	average		average
1980	400				
1981	470				
		1730	432.5		
1982	450			873	436.5
		1762	440.5		
1983	410			882.25	441.125
-		1767	441.75		
1984	432			886.25	443.125
		1778	444.5		
1985	475			911.5	455.75
		1868	467		
1986	461			946	473
		1916	479		
1987	500			946.75	473.375
		1871	467.75		
1988	480				
1989	430				

For last 4 column s (2+1+1 +1) Marks

34. Maximize: Z = 10500x + 9000y

Subject to constraints: $x + y \le 50$, $2x + y \le 80$, $x, y \ge 0$

The corner points of the feasible region are O (0,0), A (40,0), B (30,20), C (0,50)

2

 Corner Point
 Value of Z

 O (0,0)
 0

 A (40,0)
 420000

 B (30,20)
 495000

 C (0,50)
 450000

2

Maximum value occurs at x = 30, y = 20

Maximum value is 495000

*

35. Solve the system of equations using matrix method

$$2x - 3y + 5z = 11$$
, $3x + 2y - 4z = 5$, $x + y - 2z = -3$

$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ -3 \end{bmatrix}$$

1

By Cramer's rule

By Cramer's rule
$$\Delta = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix} = -1$$

$$\Delta x = \begin{vmatrix} 11 & -3 & 5 \\ 5 & 2 & -4 \\ -3 & 1 & -2 \end{vmatrix} = -11$$

1

$$\Delta y = \begin{vmatrix} 2 & 11 & 5 \\ 3 & 5 & -4 \\ 1 & -3 & -2 \end{vmatrix} = -92$$

1

$$\Delta z = \begin{vmatrix} 2 & -3 & 11 \\ 3 & 2 & 5 \\ 1 & 1 & -3 \end{vmatrix} = -53$$

1

$$x = \frac{\Delta x}{\Delta} = 11, y = \frac{\Delta y}{\Delta} = 92, z = \frac{\Delta z}{\Delta} = 53$$

1

SECTION - E

(All questions are compulsory. In case of internal choice, attempt any one question only)

36. Case Study - I:

a)

$$k + 2k + 3k + 5k = 1$$

$$k = \frac{1}{11}$$

1

b) What is the probability that student studies 1 hour.

$$P(1) = 2k = \frac{2}{11}$$

1

c) Calculate the mathematical expectation of number of hours studied by student.

$$E(x) = 0 \times k + 1 \times 2k + 2 \times 3k + 3 \times 4k + 4 \times 5k = 40k = \frac{40}{11}$$

2

What is the probability that a student study at least 3 hours

$$P(x \ge 3) = 4k + 5k$$

$$= 9k = \frac{9}{11}$$

1

37. Case Study - II:

> a) Profit function

$$P(x) = R(x) - C(x)$$

$$P(x) = 5x - 100 - 0.025x^{2}$$

1

b) P'(x) = 5 - 0.05 x

Critical point,
$$x = 100$$

		*) c

- P''(x) = -0.05c) 1 : Manufacturing 100 dolls will maximize the profit of the company, 1 Maximum Profit = ₹ 1,50,000 **OR** Find the marginal cost when 250 dolls are produced. 1 Marginal cost = C'(x) = 0.05xThe marginal cost when 250 dolls are produced = ₹ 12.50 1 38. a) Part of tank filled in one hour if A and C are opened together = $\frac{1}{6} - \frac{1}{12} = \frac{1}{12}$ If pipe A and C are opened together, then find the time taken to fill the tank = 12 hours 1 b) Part of tank filled in one hour if B and C are opened together = $\frac{1}{8} - \frac{1}{12} = \frac{1}{24}$ If pipe A and C are opened together, then find the time taken to fill the tank = 24 hours 1 c) Part of tank filled in one hour if A and B are opened together = $\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$ 1 If pipe A and C are opened together, then find the time taken
 - to fill the tank = $\frac{24}{7}$ = $3\frac{3}{7}$ hours 1 OR

Part of tank filled in one hour if three pipes are opened together = $\frac{1}{6} + \frac{1}{8} - \frac{1}{12} = \frac{5}{24}$ If three pipes are opened together, then find the time taken